32 research outputs found

    Exact bond percolation thresholds in two dimensions

    Full text link
    Recent work in percolation has led to exact solutions for the site and bond critical thresholds of many new lattices. Here we show how these results can be extended to other classes of graphs, significantly increasing the number and variety of solved problems. Any graph that can be decomposed into a certain arrangement of triangles, which we call self-dual, gives a class of lattices whose percolation thresholds can be found exactly by a recently introduced triangle-triangle transformation. We use this method to generalize Wierman's solution of the bow-tie lattice to yield several new solutions. We also give another example of a self-dual arrangement of triangles that leads to a further class of solvable problems. There are certainly many more such classes.Comment: Accepted for publication in J. Phys

    The percolation critical polynomial as a graph invariant

    Full text link
    Every lattice for which the bond percolation critical probability can be found exactly possesses a critical polynomial, with the root in [0,1] providing the threshold. Recent work has demonstrated that this polynomial may be generalized through a definition that can be applied on any periodic lattice. The polynomial depends on the lattice and on its decomposition into identical finite subgraphs, but once these are specified, the polynomial is essentially unique. On lattices for which the exact percolation threshold is unknown, the polynomials provide approximations for the critical probability with the estimates appearing to converge to the exact answer with increasing subgraph size. In this paper, I show how this generalized critical polynomial can be viewed as a graph invariant, similar to the Tutte polynomial. In particular, the critical polynomial is computed on a finite graph and may be found using the recursive deletion-contraction algorithm. This allows calculation on a computer, and I present such results for the kagome lattice using subgraphs of up to 36 bonds. For one of these, I find the prediction p_c=0.52440572..., which differs from the numerical value, p_c=0.52440503(5), by only 6.9 x 10^{-7}

    Critical manifold of the kagome-lattice Potts model

    Full text link
    Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B of G; we call B a basis of G. We introduce a two-parameter graph polynomial P_B(q,v) that depends on B and its embedding in G. The algebraic curve P_B(q,v) = 0 is shown to provide an approximation to the critical manifold of the q-state Potts model, with coupling v = exp(K)-1, defined on G. This curve predicts the phase diagram both in the ferromagnetic (v>0) and antiferromagnetic (v<0) regions. For larger bases B the approximations become increasingly accurate, and we conjecture that P_B(q,v) = 0 provides the exact critical manifold in the limit of infinite B. Furthermore, for some lattices G, or for the Ising model (q=2) on any G, P_B(q,v) factorises for any choice of B: the zero set of the recurrent factor then provides the exact critical manifold. In this sense, the computation of P_B(q,v) can be used to detect exact solvability of the Potts model on G. We illustrate the method for the square lattice, where the Potts model has been exactly solved, and the kagome lattice, where it has not. For the square lattice we correctly reproduce the known phase diagram, including the antiferromagnetic transition and the singularities in the Berker-Kadanoff phase. For the kagome lattice, taking the smallest basis with six edges we recover a well-known (but now refuted) conjecture of F.Y. Wu. Larger bases provide successive improvements on this formula, giving a natural extension of Wu's approach. The polynomial predictions are in excellent agreement with numerical computations. For v>0 the accuracy of the predicted critical coupling v_c is of the order 10^{-4} or 10^{-5} for the 6-edge basis, and improves to 10^{-6} or 10^{-7} for the largest basis studied (with 36 edges).Comment: 31 pages, 12 figure
    corecore